Тема урока: Определение четырёхугольника
Цели:
Образовательная – ввести понятие о четырёхугольнике и его элементах, научить отличать выпуклый и невыпуклый четырёхугольники, ознакомить с теоремой о сумме внутренних углов четырёхугольника.
Развивающая – формировать умение задавать вопросы и работать с учебником, развивать интерес к предмету.
Воспитательная – воспитать культуру общения, культуру математического мышления
Тип урока: изучение нового матрериала
Оборудование: модели четырёхугольников
Ход урока:
I . Аукцион “Треугольник” (5-7минут)
Вспомните, что мы знаем о треугольниках. Ответ формулируйте в виде утверждения.
Примерные ответы:
Треугольник-фигура, состоящая из трех точек и попарно соединяющих их отрезков.
Треугольник различают по сторонам: равносторонние(…_, равнобедренные(…), разносторонние(…).
Треугольники различают по углам: прямоугольные(…), тупоугольные(…), остроугольные(…).
Отрезок, соединяющий вершину треугольника с серединой противолежащей стороны, называется медианой треугольника.
Отрезок, соединяющий вершину треугольника с точкой на противолежащей стороне и лежащий на биссектрисе угла, называется биссектрисой треугольника.
Перпендикуляр, опущенный из вершины треугольника к прямой, содержащей противолежащую сторону, называют высотой треугольника.
Треугольник можно построить по трем его вершинам.
Сумма внутренних углов треугольника равна 180
Итог аукциона.
Кто смог получить “ 5”…
Что мы вспомнили: определение треугольников; виды треугольников; свойства, отражающие взаимосвязь сторон и углов, внутренних отрезков треугольника.
II. Попробуем познакомиться с новой группой геометрических фигур самостоятельно, так как имеем уже опыт изучения треугольников.
Посмотрите на модели: что их объединяет?
Определите тему урока. ( Четырехугольники).
Какие вопросы у вас возникли? 2-3 вопроса записываем на доске.
Возможные вопросы учащихся ( учитель может принимать участие в записи своих вопросов):
Что называют четырехугольником?
Какие бывают четырехугольники?
Как назвать линии внутри четырехугольников?
Делит ли каждый отрезок, соединяющий противоположные вершины четырехугольника, его угол пополам?
Делит ли этот отрезок четырехугольник на 2 равных треугольника?
Какими свойствами обладают разные четырехугольники?
Можно ли получить один четырехугольник из другого?
Чему равна сумма внутренних углов четырехугольника?
Что можно сказать о точке пересечения внутренних отрезков, соединяющих противолежащие вершины в каждом из четырехугольников?
Еще раз прочитаем все вопросы и пронумеруем их, чтобы легче с ними было работать.
Назовите вопросы, с которых надо начать изучение темы(1;2;3;4).
III. Работа в группах по 2-3 человека (или индивидуально) по желанию учеников.
Группам даётся раздаточный материал (виды четырёхугольников).
Группы 1 и 2 формируют ответы на вопросы, связанные с определением четырёхугольника.
Группы 3 и 4 находят периметр и сумму внутренних углов четырехугольников.
После выступления каждой группы обобщаем сказанное и найденное, подводим учеников к формулировке теоремы.
Теорема 1.
Сумма внутренних углов четырехугольников равна 360◦
— Если встретится новая информация, то сформулируйте его на доску.
IV. Закрепление изученного материала.
Задание №1. Найти периметр четырехугольника, если его стороны равны 7, 9,16 и 25.
Задание №2. Найти сумму остальных углов четырёхугольника, если один из углов равен 110◦.
Задание №3. Стороны четырёхугольника относятся как 4:5:8:2, а его периметр равен 76дм. Найдите стороны четырёхугольника.
Задание №4. Докажите, что если три угла четырёхугольника прямые, то и четвёртый его угол тоже прямой.
VI. Домашнее задание.
Составить рассказ о четырехугольнике: определение, основные свойства сторон, углов, диагоналей.