Ядерная физика в пособиях для абитуриентов




Рыбаков А.Б.


Ядерная физика в пособиях для абитуриентов


За последние годы издано большое количество пособий для абитуриентов. Они прочитываются десятками тысяч выпускников, их материалы используются на уроках и различных «курсах» преподавателями. В то же время обсуждения этих материалов в профессиональной печати я не видел. В этих заметках я хочу, ограничившись одной темой школьного курса, обратить внимание коллег и авторов пособий на дефекты в этих материалах. Мы обсудим здесь как неточные формулировки, так и грубые ошибки, происхождение которых и объяснить невозможно.

Многие задания представляют собой «бродячие сюжеты» и встречаются в самых разных пособиях, поэтому авторы не указываются (вот и на пособиях часто обозначены не авторы, а «авторы-составители»). К тому же, дело не в том, чтобы «схватить за руку» кого-то, а в том, чтобы обсудить некоторые тонкие моменты, на которых споткнулись даже многоопытные авторы.


Необходимы уточнения

Начнем с задания, где по задумке авторов используются сведения и из атомной и из ядерной физики. Здесь, как и везде ниже, тексты заданий цитируются дословно (хотя иногда не полностью).

1. На рисунке изображены схемы четырех атомов, соответствующие модели атомов Резерфорда. Черными точками обозначены электроны. Атому соответствует схема

Обсудим этот текст подробно, как бы «под лупой».

На рисунке явно указываются какие-то «оболочки», по которым распределены электроны. Ни о чем подобном Резерфорд не писал, так что напрасно его имя упоминается в тексте задания.

Обозначение определяет именно ядро, а совсем не какой-то атомный объект. Если же авторы хотят выделить атомный объект, то в тексте задания лучше было бы указать, что они имеют в виду (как можно судить по приведенному ответу) именно нейтральный атом.

Но это мелочи. Пойдем дальше.

Когда я показал это задание своим ученикам, у них сразу возник вопрос: «Почему электроны на рисунках так причудливо разбросаны по оболочкам? Ведь мы в 8-м классе изучали, что оболочки заполняются по определенным правилам». И мне пришлось краснеть за авторов. Действительно, последовательность заполнения электронных оболочек сейчас описана в некоторых учебниках для 8-х классов. И иллюстрируется она там именно на таких рисунках. У нейтрального атома бериллия должно быть два электрона на К-оболочке и два – на L-оболочке.

Но и это еще не все.

Для чего авторы указывают конкретный изотоп бериллия? Ведь ответ задачи от этого не зависит. По-видимому, для создания ложного хода. Ну, что ж согласимся с таким методом построения заданий. Но придется сказать, что сделали они это чрезвычайно неудачно.

Далеко не любой объект, который мы можем обозначить на бумаге, существует в природе.

Какие у авторов основания думать, что атом вообще существует?

Не будем глубоко вникать в эту проблему, лишь укажем, о чем идет речь.

Напомним, что в осях N,Z стабильные ядра образуют узкую «дорожку», которая в области легких ядер близка к прямой N=Z. Не может быть стабильного ядра, в котором число протонов Z в два раза превышает число нейтронов N.

Конечно, само по себе использование в задании нестабильного ядра не является дефектом. Но, если верить данным, приведенным в Интернете (читатель легко их найдет), то придется признать, что время жизни ядра на много порядков меньше тех характерных времен, которые позволяют говорить о существовании атома. Таким образом, задание построено на анализе объекта, не существующего в природе.

Не слишком ли много дефектов для одного несложного задания?


2. Вот абитуриентам предлагается вроде бы стандартная задача (надо предупредить читателей, что конкретные числа здесь важны).

Массы протона, нейтрона и ядра дейтерия равны соответственно 1,007825 а.е.м., 1,008665 а.е.м. и 2,013553 а.е.м. Какова энергия связи нуклонов в ядре дейтерия. Ответ выразить в МэВ и округлить до целых. 1 а.е.м. соответствует 931 МэВ.

Казалось бы, что может быть интересного в этой чисто расчетной задаче? Но – не торопитесь.

Правильный ответ, по мнению авторов, 3 МэВ.

Действительно, расчет с использованием приведенных в условии данных дает значение 2,7 МэВ. Странно, что авторы не замечают бросающуюся в глаза ошибку. Ведь можно было бы проверить результат, обратившись к кривой зависимости удельной энергии связи ядер от массового числа Еуд(А), которая есть в любом учебнике. Первая (самая нижняя) точка на этой кривой соответствует дейтрону. Легко видеть, что в этой точке Еуд ≈ 1.1 МэВ/нуклон, так что энергия связи дейтрона Есв ≈ 2.2 МэВ. Сомневаться в этих данных не приходится.

Где же зарыта собака? Давайте разбираться.

Из каких именно таблиц авторы могли взять необходимые данные?

Распространенные школьные задачники содержат справочный раздел «Мировые постоянные», там обычно приведены и массы протона и нейтрона. Кроме того, в этих задачниках есть таблицы под названием «Массы ядер». Наверно, этими справочными материалами авторы и воспользовались.

Свежие документы:  Конспект урока на тему "Единицы массы"

Так уж сложилось в ядерной физике, что в учебниках и монографиях вместо масс ядер обычно пользуются массами нейтральных атомов. Поскольку при любом ядерном превращении суммарный заряд сохраняется, это обстоятельство не должно приводить ни к каким неудобствам и ни к каким недоразумениям. Вот и в учебной литературе школьного уровня в таблицах под названием «Массы ядер», указаны вовсе не массы ядер, а массы соответствующих нейтральных атомов. Повторим, что нет никакой нужды пересчитывать эти данные в массы ядер. Но при этом все данные должны быть взяты из такого рода таблиц! Вот авторы и взяли из такой таблицы массу атома дейтерия, а вовсе не массу дейтрона (как они думали)! Но тогда и для протона они должны были взять из той же таблицы массу атома водорода (протия). Они же, взяв данные из разных таблиц, ошиблись в величине энергии связи на величину mеc2≈ 0.5 МэВ.


3. Вот задание, в котором авторы, отметив точками 4 ядра на кривой зависимости удельной энергии связи ядра от массового числа Еуд(А), спрашивают: «При распаде какого из этих ядер может выделиться энергия?».



Начнем с того, что задание сформулировано и представлено чрезвычайно небрежно. Достаточно сказать, что, по мнению авторов, Еуд измеряется в единицах МэВ/Кулон(?!). По-видимому, авторам все равно, что нуклон – что кулон. А из четырех отмеченных на кривой ядер только для двух приведены подробные обозначения.

Теперь о сути дела.

Сам вопрос задания звучит очень странно. При распаде ядра всегда выделяется энергия – иначе бы ядро не распадалось.

Авторы считают правильным ответом на свой вопрос лишь указание на ядро 4 – на ядро урана-238.

Но задумаемся, что мы знаем о других отмеченных на рисунке ядрах?

Ядро 2 – это стабильное ядро (α-частица).

Но какое ядро помечено цифрой 1? Этого мне установить не удалось. Мне не удалось найти ядро с удельной энергией связи около 3.5 МэВ/нуклон.

О ядре же, помеченном цифрой 3, вообще ничего сказать нельзя – обозначение отсутствует, о нем известно лишь приближенное значение массового числа и больше ничего. Но существуют множество ядер с заданным значением А, как стабильных, так и нестабильных.

Задание в целом можно назвать только недоразумением.

4. Приведем начало текста одного задания.

«В Периодической системе Менделеева указаны следующие номера и молярные массы элементов: Н(№1; 1,00794), Не(№2; 4,0026)…».

Разочаруем авторов. В клеточке таблицы Менделеева указаны не «молярные массы элементов», а совсем другие величины. И вообще понятие молярной массы вводится не для элемента, а для вещества! И выражается молярная масса (т.е. масса моля вещества) в СИ в кг/моль. А в клеточке таблицы Менделеева стоит совсем другая безразмерная величина – относительная атомная масса элемента. Например, молярная масса водорода равна 0.002 кг/моль, а относительная атомная масса водорода равна 1 (здесь мы ограничились одной значащей цифрой).

Уточним предыдущие утверждения. Поскольку у большинства элементов есть несколько стабильных изотопов, то речь, строго говоря, должна идти о средней (по изотопам) относительной атомной массе. Будем здесь обозначать эту величину μr.

Кстати, очень хотелось бы узнать, с какой целью в тексте задания для одного элемента эта величина указана с 4 значащими цифрами, для другого – с 6, а еще для двух – с 5?

Признаюсь еще, что я впервые сталкиваюсь с указанием номера элемента Z при помощи канцелярского символа «№».

Так всё, что учитель годами говорит о необходимости строго следовать принятой терминологии, о культуре записей, разбивается вдребезги при встрече с небрежно составленным заданием.

Теперь продолжим текст задания. Указав конкретные числовые данные, авторы пишут: «Выберите диаграмму, правильно отражающую соотношение числа протонов и нейтронов в ядрах наиболее распространенных изотопов различных элементов».

Не будем приводить графические элементы этого задания – дело не в них.

Авторы, по-видимому, исходят из уверенности, что средняя относительная атомная масса элемента всегда близка к массовому числу наиболее распространенного изотопа этого элемента. Но такого физического закона не существует!

Так, например, для цинка μr=65.4, а самый распространенный изотоп Zn-64. Стабильного же изотопа Zn-65 вообще не существует.

Для галлия μr=69.7, а самый распространенный изотоп Ga-69. Стабильного изотопа Ga-70 не существует. Ну, и так далее…

Выяснить ситуацию для конкретного элемента можно только по справочникам (и для многих элементов приближенное равенство, на котором основано задание, действительно имеет место), но держать в голове такую информацию человек, не работающий профессионально в области ядерной физики, конечно, не должен.

Так что же проверяется в этом задании?

Свежие документы:  Конспект урока для 7 класса "Масса как мера инертности тела"


«Нет, ребята, всё не так!

Всё не так, ребята!»

5. Процессы превращений элементарных частиц традиционно относят к ядерной физике. Рассмотрим одну задачу на эту тему, где авторы допускают грубую ошибку.

Электрон и позитрон аннигилируют с образованием -кванта. Найти энергию этого кванта.

В качестве правильного ответа в разных пособиях указано: 2mеc2. Интересная логика у авторов! Они, наверно, в своих рассуждениях опираются на закон сохранения энергии. Но почему же они считают, что в энергию кванта перейдет лишь энергия покоя частиц? Почему не учитывают их кинетическую энергию? И – самое главное – почему не задумались о том, что происходит с импульсом системы?

А дело-то в том, что такой процесс в принципе невозможен! Но выпускник, посвятивший специальной теории относительности несколько часов, этого знать не может и самостоятельно придумать соответствующее рассуждение тоже не сможет. Ведь не смогли это сделать авторы пособий.

Для читателей же приведем кратко эти красивейшие рассуждения.

Мы, конечно же, можем рассматривать процесс аннигиляции в любой системе отсчета. Перейдем в систему отсчета, связанной с центром инерции двух частиц. Полный импульс частиц в этой системе отсчета до столкновения равен нулю – частицы двигаются навстречу друг другу с равными по величине импульсами. Значит, полный импульс должен быть равен нулю и после превращения частиц. Но фотон-то ни в какой системе отсчета не может иметь нулевой импульс. Вот и всё.

В приведенных выше рассуждениях существенно, что частицы сталкиваются в вакууме, т.е. они не взаимодействуют ни с какой другой частицей. Если же столкновение этих частиц происходит в поле атомного ядра, то процесс с рождением одного фотона вполне возможен – необходимый импульс будет передан ядру. Аннигиляция же с рождением двух фотонов может происходить и в вакууме.

6. А вот задание из Федерального банка экзаменационных материалов(!!).

Удельные энергии связи нуклонов в ядрах плутония-240, кюрия-245 и америция-246 равны соответственно 0,21; 0,22 и 0.23 МэВ/нуклон. Из какого ядра труднее выбить нейтрон?

Мы привели текст задания дословно.

Увы, оно целиком построено на грубых ошибках. На грубых ошибках разного рода.

а). Слово «труднее» не является физическим термином и слишком отягощено побочными житейскими ассоциациями. В жизни же то, что «труднее», совсем не обязательно требует бóльших затрат энергии. Но это мелочи.

А нечеткое, «размытое» использование строгих физических терминов – это уже не мелочи, с этого и начинаются недоразумения. Нет такого термина «удельная энергия связи нуклонов». Есть термин «удельная энергии связи ядра». И есть «энергия связи протона (или нейтрона) в ядре» (см. ниже).

b). Даже неловко напоминать, что удельные энергии связи всех тяжелых ядер лежат между значениями 7 и 8 МэВ/нуклон. Откуда же взялись приведенные в тексте числа?!

с). В качестве правильного ответа авторы указывают ядро плутония-240, т.е. (если взять и поверить их данным) ядро с наименьшей удельной энергией связи! Такую логику мы не возьмемся комментировать.

Но дело совсем не в конкретной ошибке.

d). По сути дела, вопрос сводится к тому, какую энергию надо затратить, чтобы удалить нуклон из ядра, т.е. об энергии связи нуклона в ядре. Школьные учебники избегают обсуждения этих вопросов, и складывается впечатление, что эта величина совпадает с удельной энергией связи ядра Еуд. На эту удочку попались и авторы задания. А между тем это совершенно разные величины!

Автор посвятил этому вопросу статью (опубликованную в «Физике (Перв.сент.)», 2009/9), где вопрос разобран подробно.

Дело в том, что, отделяя нуклон от ядра, мы не оставляем энергии всех других нуклонов неизменными. При удалении какого-то нуклона из ядра получается другое ядро – с другой энергией связи. И это изменение энергии ядра нельзя не учитывать.

Возьмем ядро с энергией связи Есв(А,Z). Пусть речь идет об удалении из этого ядра нейтрона. Энергией связи нейтрона Еn в исходном ядре мы должны называть минимальную энергию, которую необходимо затратить, чтобы перевести эту систему нуклонов из начального состояния (т.е. ядра ) в конечное (т.е. ядро и нейтрон):

Еn = Есв(А,Z) – Есв(А-1,Z). (1)

Аналогично энергией связи протона в ядре называется следующая величина:

Ер = Есв(А,Z) – Есв(А-1,Z-1). (2)

Читатель может вооружиться соответствующими таблицами и самостоятельно проделать простые расчеты по формулам (1) и (2). Легко убедиться, что энергии связи нуклонов в разных ядрах отличаются весьма заметно (хотя удельные энергия связи Еуд для большинства ядер, исключая самые легкие, отличаются, как мы знаем, очень мало). Так же легко убедиться, что энергии связи протона Ер и нейтрона Еn в одном ядре могут заметно отличаться.

Свежие документы:  Календарно- тематическое планирование по физике, 9 класс

Так что по приведенным в тексте задания данным (даже если исправить явные опечатки) ответить на вопрос задания в принципе нельзя.


7. Приведем еще начало задания из того же Федерального банка.

«Ядро ксенона-112 после спонтанного α-распада превратилось в…».

Начнем с того, что с терминологией в этом тексте не все в порядке: «α-распадом» мы и называем именно спонтанный вылет из ядра α-частицы. Но важнее другое.

Понятно, что в такого рода заданиях проверяется чисто формальное умение абитуриента уравнивать суммы соответствующих индексов в записи ядерной реакции.

Но ведь это – физика! Далеко не любая реакция, в уравнении которой мы можем грамотно расставить индексы, осуществляется в природе.

Для ксенона-112 α-распад вообще энергетически невозможен! Убедиться в этом несложно и самостоятельно. Надо лишь иметь под рукой таблицу с массами ядер (или, еще удобнее, со значениями энергий связи). Точно так же, как выше мы ввели понятие энергии связи нуклона в ядре, можно ввести энергию связи α-частицы в ядре:

Еα = Есв(А,Z) – Есв(А-4,Z-2) – Есв(4,2) . (3)

Несложно убедиться, что для ксенона-112 эта величина отрицательна – это и значит, что α-частица спонтанно вылететь не может. Впрочем, и так хорошо известно, что α-распад становится энергетически возможен лишь при А≥140.

Эти задания возвращают нас к принципиальному вопросу – можно ли предлагать задания, сформулированные с нарушением каких-то физических принципов. Можно ли предлагать анализировать процессы, которые в действительности не осуществляются?


Театр абсурда

Происхождение ошибок в заданиях, разобранных нами выше, все-таки можно как-то понять (а понять – это уже наполовину простить). Но есть такие утверждения в пособиях для абитуриентов, такие задания, что даже просто прокомментировать их появление невозможно.

8. Приведем текст задания целиком, т.е. с вариантами ответов.

Как изменяется полная энергия системы при распаде ядра гелия на составляющие его частицы? 1) Увеличивается. 2) Уменьшается. 3) Не изменяется. 4) Увеличивается или уменьшается в зависимости от начального расстояния между ядрами дейтерия.

Выражение «ядро гелия», конечно, не определяет ядерный объект. Впрочем, по тексту четвертого варианта ответа видно, что речь идет о системе из двух дейтронов, т.е., о ядре гелия-4 (оставим в стороне вопрос о том, можно ли говорить, что ядро гелия-4 состоит из дейтронов).

Теперь обратимся к разделу «Ответы и решения» и посмотрим, какой же ответ сами авторы считают правильным. Оказывается – первый вариант!

Ну, что ж, резюмируем.

Итак, авторы считают, что ядро гелия-4 самопроизвольно распадается на протоны и нейтроны. В этом процессе, по мнению авторов, увеличивается энергия системы. И еще – авторы думают, что этот распад является реакцией термоядерного синтеза (так называется раздел, в котором помещено это задание).

Увы, нет никакой возможности серьезно анализировать этот текст.

Здесь уже не о физике надо вести речь, а о минимальной ответственности авторов (и издателей) перед читателями.

Очень надеюсь, что читатель меня поймет.

9. «Если масса продуктов ядерной реакции больше массы исходных частиц, то такая реакция идет самопроизвольно». В этой фразе мы объединили текст задания и тот вариант ответа, который авторы считают правильным.

Нет слов.

1. «На рисунке приведена зависимость числа нераспавшихся ядер N в процессе радиоактивного распада для двух изотопов. Для какого из них период полураспада минимален?»

Мы постарались воспроизвести авторский рисунок с его удивительными особенностями. Эти два графика пересекаются в трех точках! Итак, авторы считают, что графики двух разных функций вида f(x)=ае-вх могут пересекаться в трех точках. Нет слов.

11. Вот еще цитата, которая, наверно, удивит читателя.

«Если сравнить массы ядер с массами нуклонов, то окажется, что масса ядра тяжелых элементов больше суммы масс протонов и нейтронов в ядре, а для легких элементов масса ядра меньше суммы масс протонов и нейтронов в ядре».

Вот так!

И появление такого беспримерного текста не объяснишь опечаткой.

Удивительная наука физика! Интереснейшая! В учебниках и пособиях по физике можно встретить всё что угодно!

Боюсь, что читатель скажет: «Не верю! Не верю, что задания и утверждения, приведенные выше, действительно взяты из пособий». Спешим заверить читателя, что подробнейшие ссылки на источники приведенных выше цитат предоставлены редакции.

Эти тексты – очень яркое свидетельство о той ситуации, которая сложилась с изданием учебной литературы по физике.

Ситуация представляется мне очень тревожной. Ведь такого рода пособия, издающиеся и переиздающиеся огромными тиражами, сейчас серьезно вмешиваются в учебный процесс. А задания и утверждения, подобные приведенным выше, могут привести к полной путанице в головах и учителей и учеников (ведь не секрет, что многие из них постараются просто запомнить «правильные» ответы).

Хочешь больше полезных материалов? Поделись ссылкой, помоги проекту расти!


Ещё документы из категории Физика: