Конспект урока по Алгебре «Тригонометрические формулы» 10 класс



Алгебра 10 класс.

Разработал:учитель математики первой категории

МАОУ УЛу-Юльской СОШ

Олей В.И.

Тема урока:Тригонометрические формулы

Вид урока:обобщающий.

  • Цель урока: Повторить и систематизировать изученный материал

  • Подготовиться к контрольной работе

  • Повторить определение синуса, косинуса, тангенса, котангенса числа α;

  • Повторить формулы приведения, формулы двойного угла, формулы сложения;

  • Повторить основное тригонометрическое тождество и формулы, выражающие связь между тангенсом и косинусом, между котангенсом и синусом.

  • Научить применять полученные знания при решении задач.

  • Повторить определение синуса, косинуса, тангенса, котангенса числа α;

  • Повторить формулы приведения, формулы двойного угла, формулы сложения;

  • Повторить основное тригонометрическое тождество и формулы, выражающие связь между тангенсом и косинусом, между котангенсом и синусом.

  • Научить применять полученные знания при решении задач.

Задачи урока:

  1. Блиц-опрос

  2. Закрепление знаний и умений

  3. Закрепление знаний и умений

  4. Проверка самостоятельной работы

  5. Это интересно

  6. Итог урока

  7. Домашнее задание

Ход урока:

  • Синусом угла α называется _____ точки, полученной поворотом точки______ вокруг начала координат на угол α

  • tg α =

  • sin2 α +cos2 α=

  • 1+ tg2 α=

  • sin(-α)=

  • tg (-α) =

  • cos (α+β)=

  • sin (αβ)=

  • sin 2α=

  • tg (α+β)=

  • sin(πα)=

  • cos ( + α)=

  • Косинусом угла α называется _____ точки, полученной поворотом точки______ вокруг начала координат на угол α

  • ctg α=

  • tg α∙ ctg α=

  • 1+ ctg2 α=

  • cos (-α)=

  • ctg (-α) =

  • cos (αβ)=

  • sin (α+β)=

  • cos 2α=

  • tg 2α=

  • cos(πα)=

  • sin ( + α)=

Блиц опрос: оценка

  • «5» — 12

  • «4» — 10 – 11

  • «3» — 7 – 9

  • «2» — 0 – 6

Закрепление знаний и умений.



Дано

Найти



Упростить выражение:

Доказать:

Упростить:

Доказать:



Самостоятельная работа :

Вариант 1


Вариант2


Проверка.

Зарождение тригонометрии относится к глубокой древности. Само название «тригонометрия» греческого происхождения, обозначающее.

Одним из основоположников тригонометрии считается древнегреческий астроном Гиппарх, живший во 2 веке до нашей эры. Гиппарх (Hípparchos) (около 180—190 до н. э., Никея, — 125 до н. э., Родос), древнегреческий учёный.

Одним из основоположников тригонометрии считается древнегреческий астроном Гиппарх, живший во 2 веке до нашей эры. Гиппарх (Hípparchos) (около 180—190 до н. э., Никея, — 125 до н. э., Родос), древнегреческий учёный.

рука

0 Мизинец 0

1 Безымянный 30

2 Средний 45

3 Указательный 60

4 Большой 90



sin α =

Значение синуса.

пальца


Угол α



1

30

2

45

3

60

4

90

Значения косинуса.

пальца

угол


4

3

30

2

45

1

60

90

Домашнее задание.







Свежие документы:  Конспект урока на тему «Чистым быть – здоровым быть»

Хочешь больше полезных материалов? Поделись ссылкой, помоги проекту расти!


Ещё документы из категории Алгебра: