Решение сложных уравнений в 5-6 классах способом подстановки



Решение сложных уравнений в 5-6 классах способом подстановки.

В 5-6 классах учащиеся затрудняются решать уравнения такого типа, как

(х + 39) – 43 =27.

Традиционное объяснение в должной мере воспринимают только сильные ученики, а для слабых – это тайна за семью печатями. Каково же традиционное объяснение решения такого уравнения? Чтобы найти уменьшаемое х + 39, надо к вычитаемому 43 прибавить разность 27:

х + 39 = 43 + 27;

х + 39 = 70.

Далее рассуждают так: чтобы найти неизвестное слагаемое Х, надо из суммы 70 вычесть другое слагаемое 39:

х = 70 – 39;

х = 31.

В большинстве случаев ученики не видят в этом уравнении вычитаемого 43 и уменьшаемого Х + 39. Поэтому я разработала алгоритм решения таких уравнений. Суть этого приёма состоит в том, чтобы любое сложное уравнение свести к простейшему. Главное, иметь хороший навык решения простейших уравнений. Рассмотрим применение этого алгоритма на конкретных примерах.

1) ( х+ 121) + 38 = 269.

Обозначим выражение, стоящее в скобках через a: х + 121 = а.

Тогда получим такое уравнение:

а + 38 = 269;

а = 269 – 38;

а = 231.

Теперь возвращаемся к выражению, стоящему в скобках:

х + 121 = а;

х + 121 = 231;

х = 231 – 121;

х = 110.

Ответ: 110.

2) ( m – 379) + 125 = 3000

Подстановка m – 379 = а;

а + 125 = 3000;

а = 3000 – 125;

а = 2875;

m – 379 = 2875;

m = 2875 + 379;

m = 3254.




3) ( 127 + р ) – 89 = 1009.

Подстановка 127 + р = а;

а – 89 = 1009;

а = 1009 + 89;

а = 1098;

127 + р = 1098;

р = 1098 – 127;

р = 971.

4) ( х – 315 ) – 27 = 36.

Подстановка х – 315 = а;

а – 27 = 36;

а = 36 + 27;

а = 63;

х – 315 = 63;

х = 315 + 63;

х = 378.


5) 872 – ( 407 + с ) = 122

Подстановка 407 + с = а;

872 – а = 122;

а = 872 – 122;

а = 750;

407 + с = 750;

с = 750 – 407;

с = 343.

6) (7001+ х).42 = 441000

Подстановка 7001 + х = а;

а . 42 = 441000;

а = 441000 : 42;

а = 10500;

7001 + х = 10500;

х = 10500 – 7001;

х = 3499.

Таким образом, очень хорошо видно, что с помощью данного приёма очень легко решаются такие сложные уравнения.












Для тех учащихся, кто так и не усвоил правил нахождения неизвестных: слагаемого, вычитаемого, множителя и т.д., я использую при решении простейших уравнений приём «по аналогии».

Свежие документы:  Конспект урока по Алгебре "Решение простейших иррациональных неравенств" 10 класс

Например, нужно решить уравнение: х – 128 = 312.

В стороне от этого уравнения слабый ученик записывает простейший арифметический пример 5 — 3 = 2.

Ученик смотрит, где в этом примере должен стоять х (на месте 5). Как из этого простого примера найти 5. Надо к 3 прибавить 2. Значит, и в уравнении, чтобы найти Х надо 128 сложить с 312.

Данный алгоритм решения уравнений служит пропедевтикой для решения в старших классах уравнений способом подстановки.



Хочешь больше полезных материалов? Поделись ссылкой, помоги проекту расти!


Ещё документы из категории Алгебра: