Конспект урока по Информатике «Количество информации в сообщении о неравновероятном событии. Формула Шеннона» 10 класс

Автор: Лузгина Наталия Геннадьевна, учитель информатики I кв.категории МБОУ «СОШ №11» г.Балахна Нижегородской обл.

Урок на тему «Количество информации в сообщении о неравновероятном событии.

Формула Шеннона».

(10 класс, профильный уровень, по учебнику Н.Д.Угриновича)


Цель урока:

Ввести формулу для определения количества информации для неравновероятных событий.


Задачи:

образовательная: познакомить учащихся с формулой для вычисления количества информации в сообщении о неравновероятном событии, формулой Шеннона; определить качественную связь между вероятностью события и количеством информации в сообщении об этом событии; научить решать задачи с использованием формулы Шеннона.

развивающая: способствовать развитию логического мышления (умения сравнивать, делать выводы), познавательной активности.

воспитывающая: прививать навыки самостоятельной работы, работы в парах; воспитывать умение высказывать личное мнение и прислушиваться к мнению других.


Используемые технологии: проблемного обучения.


Оборудование: интерактивная доска, проектор, презентация к уроку.


Ход урока

I. Постановка цели урока.

СЛАЙД 1. Учащимся предлагается устно решить задачу:

Задача: Какое сообщение содержит большее количество информации?

  • В библиотеке 8 шкафов. Книга нашлась в 3-м шкафу; (Отв.: 3 бит.)

  • Вася получил за экзамен оценку 4 (по 5-бальной системе единицы не ставят). (Отв.: 2 бит.)

  • Бабушка испекла 12 пирожков с капустой, 12 пирожков с повидлом. Маша съела один пирожок. (Отв.: 1 бит.)

  • Бабушка испекла 8 пирожков с капустой, 24 пирожка с повидлом. Маша съела один пирожок.

(В четвертом варианте учащиеся сталкиваются с ситуацией, когда события не равновероятны).

Действительно, далеко не все ситуации имеют одинаковые вероятности реализации. Существует много таких ситуаций, у которых вероятности реализации различаются. Например, если бросают несимметричную монету или «правило бутерброда».

СЛАЙД 2. Как вы думаете, какова же тема сегодняшнего урока? А цель?( исходя из выше обозначенной проблемы учащиеся сами формулируют тему и цель урока)

Ребята, вы абсолютно правы, сегодня на уроке мы должны ответить на вопрос: как вычислить количество информации в сообщении о неравновероятном событии.


II. Объяснение нового материала.

СЛАЙД 3. Для вычисления количества информации в сообщении о неравновероятном событии используют следующую формулу: 

I=log2(1/p), где

– это количество информации, 

р – вероятность события.

Вероятность события выражается в долях единицы и вычисляется по формуле: 

р=K/N, где 

К – величина, показывающая сколько раз произошло интересующее нас событие,

N – общее число возможных исходов какого-то процесса.

СЛАЙД 4. Вернемся к нашей задаче.

Пусть:

К1 – это количество пирожков с повидлом, К1=24

К2 – количество пирожков с капустой, К2=8

N – общее количество пирожков, N = К1 +К2, N=24+8=32

Вычислим вероятность выбора пирожка с разной начинкой и количество информации, которое при этом было получено.

Вероятность выбора пирожка с повидлом: р1=24/32=3/4=0,75.

Вероятность выбора пирожка с капустой: р2=8/32=1/4=0,25.

Обращаем внимание учащихся на то, что в сумме все вероятности дают 1.

Вычислим количество информации, содержащееся в сообщении, что Маша выбрала пирожок с повидлом: 

I1=log2(1/p1), I1= log2(1/0,75)= log21,3=1,15470 бит.

Вычислим количество информации, содержащееся в сообщении, если был выбран пирожок с капустой:

I2=log2(1/p2), I2= log2(1/0,25)= log24=2 бит.

При сравнении результатов вычислений получается следующая ситуация:

вероятность выбора пирожка с повидлом больше, чем с капустой, а информации при этом получилось меньше. Это не случайность, а закономерность.

Качественную связь между вероятностью события и количеством информации в сообщении об этом событии можно выразить так: чем меньше вероятность некоторого события, тем больше информации содержит сообщение об этом событии.

Вернемся к нашей задаче с пирожками. Мы еще не ответили на вопрос: сколько получим информации при выборе пирожка любого вида?

СЛАЙД 5. Ответить на этот вопрос нам поможет формула вычисления количества информации для событий с различными вероятностями, которую предложил в 1948 г. американский инженер и математик Клод Элвуд Шеннон.

Если I-количество информации, 

N-количество возможных событий, 

рi — вероятности отдельных событий, где i принимает значения от 1 до N, то количество информации для событий с различными вероятностями можно определить по формуле:

СЛАЙД 6. можно расписать формулу в таком виде:

Знак минус в формуле не означает, что количество информации в сообщении – отрицательная величина. Объясняется это тем, что вероятность (р), согласно определению, 0. Т.к. Log числа, меньшего 1 (т.е. log pi) – величина отрицательная, то произведение вероятности на логарифм числа будет положительным.

Рассмотрим формулу на нашем примере:

I = — (р1∙log2p1 + р2∙log2p2),

I= — (0,25∙ log20,25+0,75∙ log20,75)≈-(0,25∙(-2)+0,75∙(-0,42))=0,815 бит

СЛАЙД 7. Теперь ответьте на вопрос задачи, которая была поставлена в начале урока: Какое сообщение содержит большее количество информации?

  1. В библиотеке 8 шкафов. Книга нашлась в 3-м шкафу; (Отв.: 3 бит.)

  2. Вася получил за экзамен 3 балла (по 5-бальной системе единицы не ставят). (Отв.: 2 бит.)

  3. Бабушка испекла 12 пирожков с капустой, 12 пирожков с повидлом. Маша съела один пирожок. (Отв.: 1 бит.)

  4. Бабушка испекла 8 пирожков с капустой, 24 пирожка с повидлом. Маша съела один пирожок. (Отв.: 0,815 бит.)

Ответ: в 1 сообщении.

Обратите внимание на 3 и 4 задачу. Сравните количество информации.

Мы видим, что количество информации достигает максимального значения, если события равновероятны.

Можно ли применить формулу К. Шеннона для равновероятных событий?

Если p1=p2=..=pn=1/N, тогда формула принимает вид:


Мы видим, что формула Хартли является частным случаем формулы Шеннона.


III. Закрепление изучаемого материала.

СЛАЙД 8.

Задача №1: (объясняет учитель)

В корзине лежат 32 клубка красной и черной шерсти. Среди них 4 клубка красной шерсти.

Сколько информации несет сообщение, что достали клубок красной шерсти? Сколько информации несет сообщение, что достали клубок шерсти любой окраски?

Дано: Кк=4;N=32

Найти: Iк, I

Решение:

  1. Найдем количество клубков черной шерсти:

Кч=N- Кк; Кч=32-4=28

  1. Найдем вероятность доставания клубка каждого вида:

pк= Кк/N, pк =4/32=1/8;

pч= Кч/N, pч =28/32=7/8;

  1. Найдем количество информации, которое несет сообщение, что достали клубок красной шерсти:

Iк= log2(1/(1/ pк)), Iк = log2(1/1/8)= log28=3 бита

  1. Найдем количество информации, которое несет сообщение, что достали клубок шерсти любой окраски: 

Ответ: Iк=3 бит; I=0,547 бит

(Задачи 2-4 учащиеся решают в парах с дальнейшей защитой решения у доски).

Задача №2: В непрозрачном мешочке хранятся 10 белых, 20 красных, 30 синих и 40 зеленых шариков. Какое количество информации будет содержать зрительное сообщение о цвете вынутого шарика?

Задача №3: В озере обитает 12500 окуней, 25000 пескарей, а карасей и щук по 6250. Какое количество информации несет сообщение о ловле рыбы каждого вида. Сколько информации мы получим, когда поймаем какую-нибудь рыбу?

Задача №4: В коробке лежат кубики: 10 красных, 8 зеленых, 5 желтых, 12 синих. Вычислите вероятность доставания кубика каждого цвета и количество информации, которое при этом будет получено.


VI. Подведение итогов урока.

СЛАЙД 9. Ответьте на вопросы:

  • Объясните на конкретных примерах отличие равновероятного события от неравновероятного?

  • С помощью какой формулы вычисляется вероятность события?

  • Объясните качественную связь между вероятностью события и количеством информации в сообщении об этом событии?

  • В каких случаях применяется формула Шеннона для измерения количества информации?

  • В каком случае количество информации о событии достигает максимального значения?

V. Домашнее задание.

СЛАЙД 10. §2.4 стр.111-113. Устно №2.3 стр.114-115. Письменно №2.3 стр.115


ИСТОЧНИКИ:

  1. Н.Д.Угринович «Информатика и ИКТ». Учебник для10 класса, профильный уровень.

  2. https://marknet.narod.ru/spr/list5.htm Информатика. Справочный материал. Количество информации. Формулы Хартли и Шеннона

  3. Н.Д.Угринович, методическое пособие «Информатика и ИКТ 8 -11 класс»

Свежие документы:  Конспект урока для 3 класса "Охрана животных"

Хочешь больше полезных материалов? Поделись ссылкой, помоги проекту расти!


Ещё документы из категории Информатика: