Конспект урока по Математике «Построение сечений многогранников на основе аксиоматики» 10 класс

Чудаева Елена Владимировна, учитель математики,

МОУ «Инсарская средняя общеобразовательная школа №1»,

г. Инсар, Республика Мордовия



Автор – Чудаева Елена Владимировна, учитель математики

Образовательное учреждение – Муниципальное общеобразовательное учреждение «Инсарская средняя общеобразовательная школа №1» Республика Мордовия, город Инсар

Предмет — геометрия

Класс — 10

Тема – «Построение сечений многогранников на основе аксиоматики»

Учебно-методическое обеспечение: Атанасян Л.С. и др. Геометрия 10-11 класс.

Время реализации занятий – 45 минут

Оборудование и материалы для урока: компьютер, проектор, экран, презентация для сопровождения урока, раздаточный материал учащихся.

Авторский медиапродукт: Среда — Microsoft Office PowerPoint, Paint.

Вид медиапродукта: наглядная презентация учебного материала, образовательный комплекс


Методическая информация

Тип урока


Обобщение и систематизация ЗУН

Цель урока


в углублении, обобщении, систематизации, закреплении полученных знаний и развитии их в перспективе (изучить метод следов)

Задачи урока


1. Сформировать у школьников мотивацию к изучению данной темы.

2. Развивать у учащихся умение пользоваться опорными знаниями, для получения новых знаний.

3. Развивать у учащихся мышление (умение выделять существенные признаки и делать обобщения).

4. Развивать у учащихся навыки творческого подхода к решению задач и навыки исследовательской работы над задачей.

Знания, умения, навыки и качества, которые актуализируют/приобретут/закрепят/др. ученики в ходе урока

  • умение пользоваться опорными знаниями, для получения новых знаний;

  • умение выделять существенные признаки и делать обобщения;

  • навыки творческого подхода к решению задач на построение сечений

Подробный конспект урока

Ход и содержание урока


I этап –Вводная беседа. Проверка домашнего задания. (6-7 мин)

II этап – Актуализация знаний (10 мин)

(повторение теоретического материала)

III этап – Применение знаний в стандартной ситуации (6-7 мин), работа по готовым чертежам

IV этап – Повторение свойства параллельных плоскостей (6 мин)

V этап — Выход на получение новых знаний: «Метод следов»(6 мин)

VI этапСамостоятельная работа (4-5 мин)

VII этап – подведение итогов урока (4 мин)

Рефлексия деятельности на уроке


Что нового вы узнали на уроке?

Чему вы научились?

Какое у вас настроение в конце урока?

Можете ли вы научить новому способу решения задач товарища?

Домашнее задание


Составить две задачи на построение сечений многогранников с использованием полученных знаний.

В помощь учителю

Использованные источники и литература (если имеются)

1. Электронное издание «1С: Школа. Математика, 5-11 кл. Практикум»

2. Электронное издание «Решебник по геометрии. Пособие для абитуриентов. Полный курс за 7-11 классы»


Обоснование, почему данную тему оптимально изучать с использованием медиа, мультимедиа, каким образом осуществить

Данную тему оптимально изучать с использованием мультимедиа, так как это позволит показать учащимся поэтапное решение задач на построение сечений


План урока:

1. Сформирование у школьников мотивации к изучению данной темы.

2. Проверка домашнего задания. Исторические сведения.

3. Повторение опорных знаний (аксиоматика, способы задания плоскости).

4. Применение знаний в стандартной ситуации.

5. Изучение и закрепление нового материала: метод следов.

6. Самостоятельная работа.

7. Подведение итога урока.

8. Домашнее задание.

Ход урока: I этап – Вводная беседа.

Проверка домашнего задания. (6-7 мин)

Содержание урока

Формы и методы работы

учителя

Виды деятельности

учащихся

1.Мотивация


Вводная беседа (1 мин)


Слушают учителя


2. Проверка домашнего задания


Комментирует мини-выступления учащихся


Слушают выступления товарищей, задают вопросы


II этап Актуализация знаний (10 мин)

(повторение теоретического материала)


Содержание урока

Формы и методы работы

учителя

Виды деятельности

учащихся

1. Повторение аксиом стереометрии

Работа по готовым слайдам (фронтальный опрос учащихся)

Устные ответы на вопросы учителя


2. Повторение: взаимное расположение в пространстве прямых и плоскостей

3. Обобщение теории

Вывод о способах задания плоскости

Запись вывода в тетрадь

4. Повторение понятия многогранника и сечения многогранника плоскостью

Опрос учащихся

Устные ответы на вопросы учителя


III этап Применение знаний в стандартной ситуации(6-7 мин)

(работа по готовым чертежам)

Содержание урока

Формы и методы работы

учителя

Виды деятельности

учащихся

Решение типовых задач по готовым чертежам (каждому ученику выдается рабочий листок с условием задачи и чертежом для построения сечения).


Объяснение предстоящей работы.


Совместное решение первой задачи (подробное комментирование шагов решения и записи оформления в рабочий лист).

Изучение условия задачи, работа по готовым чертежам, с последующим разбором решения по слайдам.



IV этап Свойства параллельных плоскостей (6 мин)

Содержание урока

Формы и методы работы учителя

Виды деятельности учащихся

1. Повторение темы «Параллельность плоскостей».


2. Решение задач

Работа по готовым слайдам (фронтальный опрос учащихся)

Проверка правильности выполнения задания


Устные ответы на вопросы учителя


Построение сечений в рабочем листе.

Ответы у доски.


V этап — Выход на получение новых знаний: «Метод следов»(6 мин)

Содержание урока

Формы и методы работы

учителя

Виды деятельности

учащихся

1. Изучение нового материала




2. Закрепление нового материала

Объяснение нового материала. Показ учебного фрагмента учебного фильма «Как построить сечение куба?»

Работа по готовым чертежам у доски (с последующим комментированием этапов построения сечения по слайду)

Слушают объяснение учителя. Просмотр учебного фильма. Анализ видеофрагм., запись образца решения.

Двое учащихся решают у доски, остальные в рабочем листе


VI этап — Самостоятельная работа (4-5 мин)

Содержание урока

Формы и методы работы

учителя

Виды деятельности

учащихся

Самостоятельная работа обучающего характера



Объяснение предстоящей работы.


Проверка выполнения задания.

Выполнение самостоятельной работы (по готовым чертежам).

Самопроверка по готовым слайдам.


VII этап подведение итогов урока (4 мин)

Содержание урока

Формы и методы работы

учителя

Виды деятельности

учащихся

1. Подведение итогов


2. Творческое домашнее задание

Беседа по итогам урока с использованием слайдов

Проецируется на экран

Устные ответы на вопросы учителя

Запись в дневники

ХОД УРОКА

I. Вступительная беседа. Исторические сведения.

Учитель: Здравствуйте, ребята! Тема нашего урока «Построение сечений многогранников на основе аксиоматики». (слайд 1) На уроке мы обобщим и систематизируем пройденный теоретический материал, и применим его к практическим задачам на построение сечений, с выходом на новый более сложный уровень трудности задач.

Главная цель нашего урока в углублении, систематизации, закреплении полученных знаний и развитии их в перспективе. (слайд 2)

В качестве домашнего задания вам было предложено написание рефератов или небольших выступлений об истории развития геометрии, о жизни великих математиков, об их знаменитых открытиях и теоремах. Доклады и рефераты получились очень интересные, но на уроке мы заслушаем только три мини-выступления, отвечающие на вопрос, что изучает стереометрия, как возникла и развивалась и где находит своё применение?

1 ученик. Понятие стереометрии, что изучает. (2 мин) Слайд 3

2 ученик. Евклид – основоположник геометрии, греческая архитектура. (2 мин) Слады 4,5,6

3 ученик. Математическая теория живописи. «Золотое сечение» — формула совершенного человеческого тела по Леонардо да Винчи. (2 – 3 мин)

Слады 7,8. В стереометрии изучаются красивые математические объекты. Их формы находят своё применение в искусстве, архитектуре, строительстве. « Не случайно говорят, что пирамида Хеопса – немой трактат по геометрии, а греческая архитектура – внешнее выражение геометрии Евклида», — писал архитектор Корбюзье.


Слайд 9. Прошли века, но роль геометрии не изменилась. Она по прежнему остается «грамматикой архитектора». Геометрические формы находят своё применение в искусстве, архитектуре, строительстве.


Слайды 10. Математическая теория живописи – это теория перспективы, представляющая, по словам Леонардо да Винчи, «тончайшее исследование и изобретение, основанное на изучении математики, которое силой линий заставляло казаться отдаленным то, что близко, и большим то, что невелико». Развернувшееся в эпоху Возрождения строительство инженерных сооружений возродило и расширило применявшиеся в античном мире приёмы проекционных изображений. Архитекторы и скульпторы встали перед необходимостью создания учения о живописной перспективе на геометрической основе. Многочисленные примеры построения перспективных изображений имеются в работах гениального итальянского художника и выдающегося ученого Леонардо да Винчи. Он впервые говорит о сокращении масштаба разных отрезков удаляющихся в глубь картины, кладет начало панорамной перспективе, указывает правила распределения теней, высказывает уверенность в существовании некой математической формулы красоты отношения размеров человеческого тела – формулы «золотого сечения».


Слайд 11. Таким образом мы плавно подошли к теме нашего урока, и мостиком в его следующий этап будут слова Леонардо да Винчи :

«Те, кто влюбляются в практику без теории, уподобляются мореплавателю, садящемуся на корабль без руля и компаса и потому никогда не знающему, куда он плывет».

Это высказывание определяет следующий этап нашего урока: повторение теоретического материала.

II. Актуализация знаний (повторение теоретического материала)

2.1. Аксиомы стереометрии (таблицы остаются учащимся для работы).

А 1. Через любые три точки пространства, не лежащие на одной прямой, проходит плоскость и притом только одна.

А 2. Если две точки прямой принадлежат плоскости, то и вся прямая принадлежит этой плоскости.

А 3. Если две плоскости имеют общую точку, то они пересекаются по прямой.

В ходе беседы выделяются существенные моменты теории:

а) разъяснить содержание аксиом и иллюстрировать на модели;

б) чтение учащимися текста аксиом;

в) выполнение чертежа;

г
) запись содержания с помощью символов.

2.2. Следствия из аксиом стереометрии.


2.3. Взаимное расположение в пространстве прямых и плоскостей.

а) двух прямых (прямые параллельны, пересекаются, скрещиваются)

б) прямой и плоскости (прямая лежит в плоскости, пересекает плоскость, параллельна плоскости)

в
) двух плоскостей
(плоскости пересекаются либо параллельны).



В ходе беседы выделяются существенные моменты теории:


а) Признак параллельности прямой и плоскости: Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна данной плоскости.


б) Признак параллельности плоскостей: Если две пересекающиеся прямые одной плоскости соответственно параллельны двум пересекающимся прямым другой плос­кости, то эти плоскости параллельны.



Учитель: Обобщая все сказанное, приходим к выводу о способах задания плоскости.















2.5. Понятие многогранников. Сечение.


Многогранником называется тело, ограниченное конечным числом плоскостей. Поверхность многогранника состоит из конечного числа многоугольников.

М
ногоугольник, полученный при пересечении многогранника и плоскости, называется сечением многогранника указанной плоскостью.

III. Применение знаний в стандартной ситуации.


Используя полученные знания, применим их к построению сечений многогранников на основе аксиоматики.

Примеры и их решение приводят учащиеся (под руководством учителя).







IV. Построение сечений с использованием свойств параллельных плоскостей.

Учитель: Для решения следующей группы задач нам необходимо повторить свойства параллельных плоскостей.

















V. Выход на получение новых знаний: «Метод следов».

Просмотр учебного фильма.

Электронное издание «1С: Школа. Математика, 5-11 кл. Практикум»

Применение полученных знаний (решение учащимися двух задач у доски с последующим просмотром правильного решения и записи оформления).




VIСамостоятельная работа

с последующей взаимопроверкой (по слайду с готовым решением).

VII. Подведение итогов урока

  1. Что нового вы узнали на уроке?

  2. Каким образом строится сечение тетраэдра?

  3. Какие многоугольники могут быть сечением тетраэдра?

  4. К
    акие многоугольники могут получиться в сечении параллелепипеда?

  5. Что вы можете сказать о методе следов?

Творческое домашнее задание. Составить две задачи на построение сечений многогранников с использованием полученных знаний.



Литература:

  1. Атанасян Л.С. и др. Геометрия 10-11 класс. Учебное пособие.

  2. Электронное издание «1С: Школа. Математика, 5-11 кл. Практикум»

  3. Электронное издание «Решебник по геометрии. Пособие для абитуриентов. Полный курс за 7-11 классы»




Свежие документы:  Тест по математике "Квадратные уравнения. Основные понятия"

Хочешь больше полезных материалов? Поделись ссылкой, помоги проекту расти!


Ещё документы из категории Математика: